Algoritmos y Diagramas
jueves, 1 de septiembre de 2016
Diferencias entre Algoritmos y Diagramas de Flujo
Por algoritmo se entiende "una lista de instrucciones donde se especifica una sucesión de operaciones necesaria para resolver cualquier problema de un tipo dado".
El algoritmo es de carácter general y puede aplicarse a cualquier operación matemática o a cualquier problema.
Los algoritmos, para llegar a ser tales, deben reunir ciertas características: que el procedimiento (pasos a seguir) debe estar estrictamente descripto, cada acción debe ser precisa y general, es decir, que pueda ser aplicable a todos los elementos de una misma clase.
Los diagramas de flujo, como su nombre lo indica, son gráficas que representan la dirección que sigue la información que contiene un algoritmo. Los datos se encierran en diferentes figuras, llamadas: figuras lógicas.
Existen cinco figuras lógicas únicas utilizadas en el diagrama de flujo: inicio, proceso, ciclo y fin.
miércoles, 31 de agosto de 2016
Clases de Algoritmos
Tipos de algoritmos según su función
Técnicas de diseño de algoritmos
- Algoritmos voraces (greedy): seleccionan los elementos más prometedores del conjunto de candidatos hasta encontrar una solución. En la mayoría de los casos la solución no es óptima.
- Algoritmos paralelos: permiten la división de un problema en subproblemas de forma que se puedan ejecutar de forma simultánea en varios procesadores.
- Algoritmos probabilísticos: algunos de los pasos de este tipo de algoritmos están en función de valores pseudoaleatorios.
- Algoritmos determinísticos: el comportamiento del algoritmo es lineal: cada paso del algoritmo tiene únicamente un paso sucesor y otro antecesor.
- Algoritmos no determinísticos: el comportamiento del algoritmo tiene forma de árbol y a cada paso del algoritmo puede bifurcarse a cualquier número de pasos inmediatamente posteriores, además todas las ramas se ejecutan simultáneamente.
- Divide y vencerás: dividen el problema en subconjuntos disjuntos obteniendo una solución de cada uno de ellos para después unirlas, logrando así la solución al problema completo.
- Metaheurísticas: encuentran soluciones aproximadas (no óptimas) a problemas basándose en un conocimiento anterior (a veces llamado experiencia) de los mismos.
- Programación dinámica: intenta resolver problemas disminuyendo su coste computacional aumentando el coste espacial.
- Ramificación y acotación: se basa en la construcción de las soluciones al problema mediante un árbol implícito que se recorre de forma controlada encontrando las mejores soluciones.
- Vuelta atrás (backtracking): se construye el espacio de soluciones del problema en un árbol que se examina completamente, almacenando las soluciones menos costosas.
Temas relacionados
- Cota inferior asintótica
- Cota ajustada asintótica
- Complejidad computacional
- Diagramas de flujo
- Diagrama Nassi-Shneiderman
- Máquina de Turing
Disciplinas relacionadas
Análisis de algoritmos
Como medida de la eficiencia de un algoritmo, se suelen estudiar los
recursos (memoria y tiempo) que consume el algoritmo. El análisis de
algoritmos se ha desarrollado para obtener valores que de alguna forma
indiquen (o especifiquen) la evolución del gasto de tiempo y memoria en
función del tamaño de los valores de entrada.
El análisis y estudio de los algoritmos es una disciplina de las ciencias de la computación y, en la mayoría de los casos, su estudio es completamente abstracto sin usar ningún tipo de lenguaje de programación ni cualquier otra implementación; por eso, en ese sentido, comparte las características de las disciplinas matemáticas
Así, el análisis de los algoritmos se centra en los principios básicos del algoritmo, no en los de la implementación particular. Una forma de plasmar (o algunas veces "codificar") un algoritmo es escribirlo en pseudocódigo o utilizar un lenguaje muy simple tal como Lexico, cuyos códigos pueden estar en el idioma del programador.
El análisis y estudio de los algoritmos es una disciplina de las ciencias de la computación y, en la mayoría de los casos, su estudio es completamente abstracto sin usar ningún tipo de lenguaje de programación ni cualquier otra implementación; por eso, en ese sentido, comparte las características de las disciplinas matemáticas
Así, el análisis de los algoritmos se centra en los principios básicos del algoritmo, no en los de la implementación particular. Una forma de plasmar (o algunas veces "codificar") un algoritmo es escribirlo en pseudocódigo o utilizar un lenguaje muy simple tal como Lexico, cuyos códigos pueden estar en el idioma del programador.
Algoritmos como funciones
Un algoritmo se puede concebir como una función que transforma los datos de un problema (entrada) en los datos de una solución (salida). Más aún, los datos se pueden representar a su vez como secuencias de bits, y en general, de símbolos cualesquiera.
Como cada secuencia de bits representa a un número natural (véase Sistema binario), entonces los algoritmos son en esencia funciones de los números naturales en los números naturales que sí se pueden calcular. Es decir que todo algoritmo calcula una función donde cada número natural es la codificación de un problema o de una solución.
En ocasiones los algoritmos son susceptibles de nunca terminar, por ejemplo, cuando entran a un bucle infinito. Cuando esto ocurre, el algoritmo nunca devuelve ningún valor de salida, y podemos decir que la función queda indefinida para ese valor de entrada.
Por esta razón se considera que los algoritmos son funciones parciales, es decir, no necesariamente definidas en todo su dominio de definición.
Cuando una función puede ser calculada por medios algorítmicos, sin importar la cantidad de memoria que ocupe o el tiempo que se tarde, se dice que dicha función es computable. No todas las funciones entre secuencias datos son computables. El problema de la parada es un ejemplo.
Como cada secuencia de bits representa a un número natural (véase Sistema binario), entonces los algoritmos son en esencia funciones de los números naturales en los números naturales que sí se pueden calcular. Es decir que todo algoritmo calcula una función donde cada número natural es la codificación de un problema o de una solución.
En ocasiones los algoritmos son susceptibles de nunca terminar, por ejemplo, cuando entran a un bucle infinito. Cuando esto ocurre, el algoritmo nunca devuelve ningún valor de salida, y podemos decir que la función queda indefinida para ese valor de entrada.
Por esta razón se considera que los algoritmos son funciones parciales, es decir, no necesariamente definidas en todo su dominio de definición.
Cuando una función puede ser calculada por medios algorítmicos, sin importar la cantidad de memoria que ocupe o el tiempo que se tarde, se dice que dicha función es computable. No todas las funciones entre secuencias datos son computables. El problema de la parada es un ejemplo.
Medios de expresión de un algoritmo
Los algoritmos pueden ser expresados de muchas maneras, incluyendo al lenguaje natural, pseudocódigo, diagramas de flujo y lenguajes de programación
entre otros.
Las descripciones en lenguaje natural tienden a ser ambiguas y extensas. El usar pseudocódigo y diagramas de flujo evita muchas ambigüedades del lenguaje natural. Dichas expresiones son formas más estructuradas para representar algoritmos; no obstante, se mantienen independientes de un lenguaje de programación específico.
La descripción de un algoritmo usualmente se hace en tres niveles:
Los diagramas de flujo son usados para representar algoritmos pequeños, ya que abarcan mucho espacio y su construcción es laboriosa. Por su facilidad de lectura son usados como introducción a los algoritmos, descripción de un lenguaje y descripción de procesos a personas ajenas a la computación.
Programadores diferentes suelen utilizar convenciones distintas, que pueden estar basadas en la sintaxis de lenguajes de programación concretos.
Sin embargo, el pseudocódigo, en general, es comprensible sin necesidad de conocer o utilizar un entorno de programación específico, y es a la vez suficientemente estructurado para que su implementación se pueda hacer directamente a partir de él.
Las descripciones en lenguaje natural tienden a ser ambiguas y extensas. El usar pseudocódigo y diagramas de flujo evita muchas ambigüedades del lenguaje natural. Dichas expresiones son formas más estructuradas para representar algoritmos; no obstante, se mantienen independientes de un lenguaje de programación específico.
La descripción de un algoritmo usualmente se hace en tres niveles:
- Descripción de alto nivel. Se establece el problema, se selecciona un modelo matemático y se explica el algoritmo de manera verbal, posiblemente con ilustraciones y omitiendo detalles.
- Descripción formal. Se usa pseudocódigo para describir la secuencia de pasos que encuentran la solución.
- Implementación. Se muestra el algoritmo expresado en un lenguaje de programación específico o algún objeto capaz de llevar a cabo instrucciones.
Diagrama de flujo
Los diagramas de flujo son usados para representar algoritmos pequeños, ya que abarcan mucho espacio y su construcción es laboriosa. Por su facilidad de lectura son usados como introducción a los algoritmos, descripción de un lenguaje y descripción de procesos a personas ajenas a la computación.
Pseudocódigo
El pseudocódigo está pensado para facilitar a las personas el entendimiento de un algoritmo, y por lo tanto puede omitir detalles irrelevantes que son necesarios en una implementación.Programadores diferentes suelen utilizar convenciones distintas, que pueden estar basadas en la sintaxis de lenguajes de programación concretos.
Sin embargo, el pseudocódigo, en general, es comprensible sin necesidad de conocer o utilizar un entorno de programación específico, y es a la vez suficientemente estructurado para que su implementación se pueda hacer directamente a partir de él.
Suscribirse a:
Entradas (Atom)