En general, no existe ningún consenso definitivo en cuanto a la definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un cálculo o un problema abstracto, es decir, que un número finito de pasos convierten los datos de un problema (entrada) en una solución (salida).
Sin embargo cabe notar que algunos algoritmos no necesariamente tienen que terminar o resolver un problema en particular. Por ejemplo, una versión modificada de la criba de Eratóstenes que nunca termine de calcular números primos no deja de ser un algoritmo.
A lo largo de la historia varios autores han tratado de definir formalmente a los algoritmos utilizando modelos matemáticos. Esto fue realizado por Alonzo Church en 1936 con el concepto de "calculabilidad efectiva" basada en su cálculo lambda y por Alan Turing basándose en la máquina de Turing.
Los dos enfoques son equivalentes, en el sentido en que se pueden resolver exactamente los mismos problemas con ambos enfoques. Sin embargo, estos modelos están sujetos a un tipo particular de datos como son números, símbolos o gráficas mientras que, en general, los algoritmos funcionan sobre una vasta cantidad de estructuras de datos. En general, la parte común en todas las definiciones se puede resumir en las siguientes tres propiedades siempre y cuando no consideremos algoritmos paralelos
No hay comentarios:
Publicar un comentario